186 research outputs found

    Coverage and density of a low power, low data rate, spread spectrum wireless sensor network for agricultural monitoring

    Get PDF
    A physical layer specification for a low power, low complexity, low data rate sensor network suitable for agricultural monitoring is investigated. Code division multiple access (CDMA) with high processing gain is used to facilitate transmission powers which comply with the Ultra Wide Band (UWB) spectral mask, and this permits physically small nodes with limited energy storage capacity. The interference arising from each node is calculated, and it is shown that for the investigated scenario and specification, an aggregate data rate of 2 bytes per minute and a node population of approximately 1000 can be supported at distances up to a few kilometres from the central node, with less than 0.2% chance of failure due to multiple access interference

    Business Success and Businesses' Beauty Capital

    Get PDF
    We examine whether a difference in pay for beauty is supported by different productivity of people according to looks. Using a sample of advertising firms, we find that those firms with better-looking executives have higher revenues and faster growth than do otherwise identical firms whose executives are not so good-looking. The impact on revenue far exceeds the likely effect of beauty on the executives' wages. This suggests that their beauty creates firm-specific investments, in the form of improved relationships within work groups, the returns to which are shared by the firm and the executive.

    Low carrier concentration crystals of the topological insulator Bi2_2Te2_2Se

    Full text link
    We report the characterization of Bi2_2Te2_2Se crystals obtained by the modified Bridgman and Bridgman-Stockbarger crystal growth techniques. X-ray diffraction study confirms an ordered Se-Te distribution in the inner and outer chalcogen layers, respectively, with a small amount of mixing. The crystals displaying high resistivity (>1Ωcm> 1 \mathrm{\Omega cm}) and low carrier concentration (5×1016\sim 5\times 10^{16}/cm3^3) at 4 K were found in the central region of the long Bridgman-Stockbarger crystal, which we attribute to very small differences in defect density along the length of the crystal rod. Analysis of the temperature dependent resistivities and Hall coefficients reveals the possible underlying origins of the donors and acceptors in this phase.Comment: 16 pages, 5 figures, accepted by PR

    Lifestyle and Horizontal Gene Transfer- Mediated Evolution of \u3ci\u3eMucispirillum schaedleri\u3c/i\u3e, a Core Member of the Murine Gut Microbiota

    Get PDF
    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem

    Lifestyle and Horizontal Gene Transfer- Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota

    Get PDF
    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem

    Oversampled sigma–delta LMS adaptive FIR filters

    No full text

    Modeling scatterer clusters in 3D using spherical statistics for 4G communications

    No full text
    Paper describes the modelling of scatterer clusters in 3D using spherical statistics for 4G communications

    An improved algorithm for assessing the overall quantisation Error in FPGA based CORDIC systems computing a vector magnitude

    No full text
    The CORDIC (coordinate rotation digital computer) algorithm is an iterative technique that can be used to compute many arithmetic functions using mainly shifts and additions making it ideal for FPGA implementation. In the early 1990s, Yu Hen Hu developed an equation for the overall quantisation error (OQE) experienced by the CORDIC algorithm when computing a vector magnitude. This equation could be used to find the most efficient architecture that would give a desired level of accuracy thus avoiding a trial and error approach. In this paper, we note that in fact the OQE overestimates the error in many cases, thus yielding inefficient architectures. Hence, this paper presents an updated equation for the OQE which is more accurate in predicting the error. To illustrate the improved accuracy of the new OQE expression, comparisons are made between CORDIC systems found using both versions of the OQE algorithm and Direct systems computing a vector magnitude. This comparison is of interest as it shows that CORDIC systems based on the new OQE expression use considerably fewer FPGA resources than CORDIC systems found using the original algorithm or equivalent direct designs. Given the widespread use of CORDIC in FPGA designs, particularly in DSP, this is significant
    corecore